
Linear Regression Models E-Learning Kurs
€139,00
€159,00
Informationen
Linear Regression Models E-learning
Order this unique E-learning course Linear Regression Models online, 1 year 24/7 access to rich interactive videos, speech, progress monitoring through reports and tests per chapter to directly test the knowledge.
Kursinhalt
Fundamentals of Linear Regression Models
Linear Regression Models: Introduction to Linear Regression
Course Overview
Statistical Tools and Regression
Reasons to Use Regression
Regression Loss: Least Square Error
Capturing Variance in Regression
Prediction Using Regression
Introduction to Deep Learning
The Architecture of Neural Networks
Neurons: The Building Blocks of a Neural Network
Linear Regression Using a Single Neuron
Training a Neural Network
Gradient Descent Optimization
Exercise: Introduction to Linear Regression
Statistical Tools and Regression
Reasons to Use Regression
Regression Loss: Least Square Error
Capturing Variance in Regression
Prediction Using Regression
Introduction to Deep Learning
The Architecture of Neural Networks
Neurons: The Building Blocks of a Neural Network
Linear Regression Using a Single Neuron
Training a Neural Network
Gradient Descent Optimization
Exercise: Introduction to Linear Regression
Linear Regression Models: Building Simple Regression Models with Scikit Learn and Keras
Course Overview
Loading a Dataset
Splitting a Dataset for Training and Validation
Keras Installation
Training and Evaluating a Model
Building a Sequential Model
Training a Neural Network
Evaluating a Neural Network
Exercise: Building Simple Regression Models
Loading a Dataset
Splitting a Dataset for Training and Validation
Keras Installation
Training and Evaluating a Model
Building a Sequential Model
Training a Neural Network
Evaluating a Neural Network
Exercise: Building Simple Regression Models
Linear Regression Models: Multiple and Parsimonious Linear Regression
Course Overview
Understanding Multiple Regression
Kitchen Sink Regression
Training and Evaluating the Model
Preparing Data for a Neural Network
Building a Neural Network
Evaluating the Neural Network
Finding Correlations in a Dataset
Introducing Parsimonious Regression
Applying Parsimonious Regression with Scikit Learn
Applying Parsimonious Regression with Keras
Exercise: Multiple Linear Regression
Understanding Multiple Regression
Kitchen Sink Regression
Training and Evaluating the Model
Preparing Data for a Neural Network
Building a Neural Network
Evaluating the Neural Network
Finding Correlations in a Dataset
Introducing Parsimonious Regression
Applying Parsimonious Regression with Scikit Learn
Applying Parsimonious Regression with Keras
Exercise: Multiple Linear Regression
Linear Regression Models: An Introduction to Logistic Regression
Course Overview
Introducing Logistic Regression
The Logistic Regression Curve
Logistic Regression and Classification
Logistic Regression vs. Linear Regression
Logistic Regression in Keras
Preparing Data for Logistic Regression
Classification using a Logistic Regression Model
Preparing Data for a Neural Network
Building and Evaluating the Keras Classifier
Exercise: An Introduction to Logistic Regression
Linear Regression Models: Simplifying Regression and Classification with Estimators
Course Overview
Introducing Estimators
Preparing Data for a Linear Regressor Estimator
Training and Evaluating a Regressor Estimator
Preparing Data for a Linear Classifier Estimator
Training and Evaluating a Classifier Estimator
Exercise: Using TensorFlow Estimators
Introducing Estimators
Preparing Data for a Linear Regressor Estimator
Training and Evaluating a Regressor Estimator
Preparing Data for a Linear Classifier Estimator
Training and Evaluating a Classifier Estimator
Exercise: Using TensorFlow Estimators
Haben Sie nicht gefunden, wonach Sie suchen?
Lassen Sie uns helfen!
Lassen Sie uns helfen!
Eigenschaften
Produkt
Allgemeine Eigenschaften
Studiengebühr: | 5 Stunden Dauer plus Übungen (variabel) |
Sprache: | Englisch |
Online-Zugang: | 1 Jahr |
Teilnahmebescheinigung: | Ja, nach 70% der erfolgreichen Einsätze |
Fortschrittsüberwachung: | Ja |
Geeignet für Handys: | Ja |
Preisgekröntes E-Learning: | Ja |
Bewertungen
Lesen oder schreiben Sie einen Kommentar