Ihr Warenkorb
Keine Artikel in Ihrem Warenkorb
Data Science Hadoop Ecosystem E-Learning Kurs
Hadoop Ecosystem E-Learning Kurs
€139,00 €159,00

Woanders günstiger?

Lass uns wissen!

+31367601019 [email protected]

Hadoop Ecosystem E-Learning Kurs

Marke: Data Science
|
Klicken um zu vergrößern
€139,00 €159,00 exkl. MwSt.
€161,24 €184,44 Inkl. MwSt.
  • Kaufen Sie 2 für je €155,82 und sparen Sie 2%
  • Kaufen Sie 3 für je €154,23 und sparen Sie 3%
  • Kaufen Sie 5 für je €147,87 und sparen Sie 7%
  • Kaufen Sie 10 für je €143,10 und sparen Sie 10%
  • Kaufen Sie 25 für je €135,15 und sparen Sie 15%
  • Kaufen Sie 50 für je €124,02 und sparen Sie 22%
  • Kaufen Sie 100 für je €111,30 und sparen Sie 30%
  • Kaufen Sie 200 für je €79,50 und sparen Sie 50%
Auf Lager
|
Bestellung vor 16.00 Uhr und heute starten.
Sie haben counting... stunden
  • 1 Jahr Zugang
  • Beginnen Sie noch heute
  • Teilnahmezertifikat
Informationen

Hadoop Ecosystem E-learning

Order this unique E-learning Hadoop Ecosystem course online, 1 year 24/7 access to rich interactive videos, voice, progress monitoring through reports and tests per chapter to directly test the knowledge.

Ecosystem for Hadoop

  • start the course
  • describe supercomputing
  • recall three major functions of data analytics
  • define Big Data
  • describe the two different types of data
  • describe the components of the Big Data stack
  • identify the data repository components
  • identify the data refinery components
  • identify the data factory components
  • recall the design principles of Hadoop
  • describe the design principles of sharing nothing
  • describe the design principles of embracing failure
  • describe the components of the Hadoop Distributed File System (HDFS)
  • describe the four main HDFS daemons
  • describe Hadoop YARN
  • describe the roles of the Resource Manager daemon
  • describe the YARN NodeManager and ApplicationMaster daemons
  • define MapReduce and describe its relations to YARN
  • describe data analytics
  • describe the reasons for the complexities of the Hadoop Ecosystem
  • describe the components of the Hadoop ecosystem

Installation of Hadoop

  • start the course
  • recall the minimum system requirements for installation
  • configure the start-up shell and yum repositories
  • install the Java Developers Kit
  • setup SSH for Hadoop
  • recall why version 2.0 was significant
  • describe the three different installation modes
  • download and install Apache Hadoop
  • configure Hadoop environmental variables
  • configure Hadoop HDFS
  • start and stop Hadoop HDFS
  • configure Hadoop YARN and MapReduce
  • start and stop Hadoop YARN
  • validate the installation and configuration
  • recall the structure of the HDFS command
  • recall the importance of the output directory
  • run WordCount
  • recall the ports of the NameNode and Resource Manager Web UIs
  • use the NameNode and Resource Manager Web UIs
  • describe the best practices for changing configuration files
  • recall some of the most common errors and how to fix them
  • access Hadoop logs and troubleshoot Hadoop installation errors
  • to install and configure Hadoop and its associated components

Data Repository with HDFS and HBase

  • start the course
  • configure the replication of data blocks
  • configure the default file system scheme and authority
  • describe the functions of the NameNode
  • recall how the NameNode operates
  • recall how the DataNode maintains data integrity
  • describe the purpose of the CheckPoint Node
  • describe the role of the Backup Node
  • recall the syntax of the file system shell commands
  • use shell commands to manage files
  • use shell commands to provide information about the file system
  • perform common administration functions
  • configure parameters for NameNode and DataNode
  • troubleshoot HDFS errors
  • describe key attributes of NoSQL databases
  • describe the roles of HBase and ZooKeeper
  • install and configure ZooKeeper
  • instause the HBase command line to create tables and insert datall and configure HBase
  • instause the HBase command line to create tables and insert datall and configure HBase
  • manage tables and view the web interface
  • create and change HBase data
  • provide a basic understanding of how Hadoop Distributed File System functions

Data Repository with Flume

  • start the course
  • describe the three key attributes of Flume
  • recall some of the protocols cURL supports
  • use cURL to download web server data
  • recall some best practices for the Agent Conf files
  • install and configure Flume
  • create a Flume agent
  • describe a flume agent in detail
  • use a flume agent to load data into HDFS
  • identify popular sources
  • identify popular sinks
  • describe Flume channels
  • describe what is happening during a file roll
  • recall that Avro can be used as both a sink and a source
  • use Avro to capture a remote file
  • create multiple-hop Flume agents
  • describe interceptors
  • create a Flume agent with a TimeStampInterceptor
  • describe multifunction Flume agents
  • configure Flume agents for mutliflow
  • create multi-source Flume agents
  • compare replicating to multiplexing
  • create a Flume agent for multiple data sinks
  • recall some common reasons for Flume failures
  • use the logger to troubleshoot Flume agents
  • configure the various Flume agents

Data Repository with Sqoop

  • start the course
  • describe MySQL
  • install MySQL
  • create a database in MySQL
  • create MySQL tables and load data
  • describe Sqoop
  • describe Sqoop's architecture
  • recall the dependencies for Sqoop installation
  • install Sqoop
  • recall why it's important for the primary key to be numeric
  • perform a Sqoop import from MySQL into HDFS
  • recall what concerns the developers should be aware of
  • perform a Sqoop export from HDFS into MySQL
  • recall that you must execute a Sqoop import statement for each data element
  • perform a Sqoop import from MySQL into HBase
  • recall how to use chain troubleshooting to resolve Sqoop issues
  • use the log files to identify common Sqoop errors and their resolutions
  • to use Sqoop to extract data from a RDBMS and load the data into HDFS

Data Refinery with YARN and MapReduce

Data Factory with Hive

  • start the course
  • recall the key attributes of Hive
  • describe the configuration files
  • install and configure Hive
  • create a table in Derby using Hive
  • create a table in MySQL using Hive
  • recall the unique delimiter that Hive uses
  • describe the different operators in Hive
  • use basic SQL commands in Hive
  • use SELECT statements in Hive
  • use more complex HiveQL
  • write and use Hive scripts
  • recall what types of joins Hive can support
  • use Hive to perform joins
  • recall that a Hive partition schema must be created before loading the data
  • write a Hive partition script
  • recall how buckets are used to improve performance
  • create Hive buckets
  • recall some best practices for user defined functions
  • create a user defined function for Hive
  • recall the standard error code ranges and what they mean
  • use a Hive explain plan
  • understand configuration option, data loading and querying

Data Factory with Pig

  • start the course
  • describe Pig and its strengths
  • recall the minimal edits needed to be made to the configuration file
  • install and configure Pig
  • recall the complex data types used by Pig
  • recall some of the relational operators used by Pig
  • use the Grunt shell with Pig Latin
  • set parameters from both a text file and with the command line
  • write a Pig script
  • use a Pig script to filter data
  • use the FOREACH operator with a Pig script
  • set parameters and arguments in a Pig script
  • write a Pig script to count data
  • perform data joins using a Pig script
  • group data using a Pig script
  • cogroup data with a Pig script
  • flatten data using a pig script
  • recall the languages that can be used to write user defined functions
  • create a user defined function for Pig
  • recall the different types of error categories
  • use explain in a Pig script
  • install Pig, use Pig operators and Pig Latin, and retrieve and group records

Data Factory with Oozie and Hue

  • start the course
  • describe metastore and hiveserver2
  • install and configure metastore
  • install and configure HiveServer2
  • describe HCatalog
  • install and configure WebHCat
  • use HCatalog to flow data
  • recall the Oozie terminology
  • recall the two categories of environmental variables for configuring Oozie
  • install Oozie
  • configure Oozie
  • configure Oozie to use MySQL
  • enable the Oozie Web Console
  • describe Oozie workflows
  • submit an Oozie workflow job
  • create an Oozie workflow
  • run an Oozie workflow job
  • describe Hue
  • recall the configuration files that must be edited
  • install Hue
  • configure the hue.ini file
  • install and configure Hue on MySQL
  • use the Hue File Browser and Job Scheduler
  • configure Hive daemons, Oozie, and Hue

Data Flow for the Hadoop Ecosystem

  • start the course
  • describe the data life cycle management
  • recall the parameters that must be set in the Sqoop import statement
  • create a table and load data into MySQL
  • use Sqoop to import data into Hive
  • recall the parameters that must be set in the Sqoop export statement
  • use Sqoop to export data from Hive
  • recall the three most common date datatypes and which systems support each
  • use casting to import datetime stamps into Hive
  • export datetime stamps from Hive into MySQL
  • describe dirty data and how it should be preprocessed
  • use Hive to create tables outside the warehouse
  • use pig to sample data
  • recall some other popular components for the Hadoop Ecosystem
  • recall some best practices for pseudo-mode implementation
  • write custom scripts to assist with administrative tasks
  • troubleshoot classpath errors
  • create complex configuration files
  • to use Sqoop and Hive for data flow and fusion in the Hadoop ecosystem
Haben Sie nicht gefunden, wonach Sie suchen?
Lassen Sie uns helfen!
Eigenschaften
Produkt
Allgemeine Eigenschaften
Studiengebühr: 5 Stunden Dauer plus Übungen (variabel)
Sprache: Englisch
Online-Zugang: 1 Jahr
Teilnahmebescheinigung: Ja, nach 70% der erfolgreichen Einsätze
Fortschrittsüberwachung: Ja
Geeignet für Handys: Ja
Preisgekröntes E-Learning: Ja
Bewertungen
Durchschnitt von 0 Bewertungen
Kein Bewertungen
Lesen oder schreiben Sie einen Kommentar
Schreiben Sie eine Bewertung!




Wir benutzen Cookies nur für interne Zwecke um den Webshop zu verbessern. Ist das in Ordnung? Ja Nein Für weitere Informationen beachten Sie bitte unsere Datenschutzerklärung. »