Wir benutzen Cookies nur für interne Zwecke um den Webshop zu verbessern. Ist das in Ordnung? Ja Nein Für weitere Informationen beachten Sie bitte unsere Datenschutzerklärung. »
Artikelnummer: 118507813

AI Development with TensorFlow E-Learning Kurs

Artikelnummer: 118507813

AI Development with TensorFlow E-Learning Kurs

299,89 356,87 Inkl. MwSt.

KI-Entwicklung mit TensorFlow trainieren - Online-E-Learning-Kurs. Bestellen und sofort zum besten Preis starten.

Lesen Sie mehr
Verfügbarkeit:
Auf Lager
Schulungsangebot: IKT-Schulung
  • Award Winning E-learning
  • Tiefpreisgarantie
  • Persönlicher Service durch unser Expertenteam
  • Sicher online oder per Rechnung bezahlen
  • Bestellung und Start innerhalb von 24 Stunden

AI Development with TensorFlow E-Learning Ausbildung

Bestellen Sie dieses großartige E-Learning-Ausbildung AI Development mit TensorFlow Online-Kurs, 1 Jahr 24/7 Zugriff auf umfangreiche interaktive Videos, Sprache, praktische Aufgaben, Fortschrittsüberwachung durch Berichte und Tests nach Testwissen direkt. Nach dem Kurs erhalten Sie eine Teilnahmebescheinigung.

Kursinhalt

TensorFlow: Introduction to Machine Learning

Course: 1 Hour, 41 Minutes

  • Course Overview
  • Introduction to Machine Learning Algorithms
  • Understanding Machine Learning
  • Understanding Deep Learning
  • Supervised and Unsupervised Learning
  • TensorFlow for Machine Learning
  • Tensors and Operators
  • Understanding How to Install TensorFlow
  • Installing TensorFlow on the Local Machine
  • Working with Constants
  • The Computation Graph with TensorBoard
  • Working with Variables and Placeholders
  • Variables and Placeholders on TensorBoard
  • Updating Variables in a Session
  • Feed Dictionaries
  • Named Scopes for Better Visualization
  • Eager Execution
  • Exercise: Machine Learning and TensorFlow
  • Exercise: Working with Computation Graph

TensorFlow: Simple Regression and Classification Models

Course: 1 Hour, 38 Minutes

  • Course Overview
  • Understanding Linear Regression
  • Gradient Descent and Optimizers
  • Explore the Boston Housing Prices Dataset
  • Creating Training and Test Datasets for Regression
  • Base Model with scikit-learn
  • Setting up the Linear Regression Computation Graph
  • Train and Visualize the Linear Regression Model
  • Visualize the Model with TensorBoard
  • The High-Level Estimator API
  • Linear Regression with Estimators
  • Prediction Using Estimators
  • Understanding Binary Classification
  • The Cross Entropy Loss Function and Softmax
  • Continuous and Categorical Data
  • Creating Training & Test Datasets for Classification
  • Binary Classification Using Estimators
  • Exercise: Working with Linear Regression
  • Exercise: Working with Binary Classification

TensorFlow: Deep Neural Networks and Image Classification

Course: 1 Hour, 18 Minutes

  • Course Overview
  • Neural Networks and Deep Learning
  • Basic Structure of a Neural Network
  • The Mathematical Function Applied By a Neuron
  • Linear Transformation and Activation Functions
  • Training a Neural Network Using Gradient Descent
  • Forward Pass and Backward Pass
  • Image Representations in Machine Learning
  • Set Up TensorFlow and Use Jupyter Notebooks
  • The MNIST Dataset
  • Training an Estimator for Image Classification
  • Predicting Image Labels
  • Drawbacks of Deep Neural Networks for Images
  • Exercise: Working with Neural Networks
  • Exercise: Working with Image Classification

TensorFlow: Convolutional Neural Networks for Image Classification

Course: 1 Hour, 21 Minutes

  • Course Overview
  • Neural Networks and Deep Learning
  • Basic Structure of a Neural Network
  • The Mathematical Function Applied By a Neuron
  • Linear Transformation and Activation Functions
  • Training a Neural Network Using Gradient Descent
  • Forward Pass and Backward Pass
  • Image Representations in Machine Learning
  • Set Up TensorFlow and Use Jupyter Notebooks
  • The MNIST Dataset
  • Training an Estimator for Image Classification
  • Predicting Image Labels
  • Drawbacks of Deep Neural Networks for Images
  • Exercise: Working with Neural Networks
  • Exercise: Working with Image Classification
  • Explore how to model language and

Tensorflow: Word Embeddings & Recurrent Neural Networks

Course: 40 Minutes

  • Course Overview
  • One-Hot Encoding of Words
  • Frequency-Based Encoding
  • Prediction-Based Encoding
  • Word2vec and GloVe Embeddings
  • Recurrent Neurons
  • Unrolling a Recurrent Memory Cell
  • Training a Recurrent Neural Network
  • Long Memory Cells
  • Exercise: Working with Word Encoding
  • Exercise: Working with Recurrent Neural Networks

Tensorflow: Sentiment Analysis with Recurrent Neural Networks

  • Course: 58 Minutes
     
  • Course Overview
  • Configuring the TensorFlow Environment
  • Training Data
  • Data Pre-Processing
  • Unique Identifiers to Represent Words
  • Construct a Recurrent Neural Network
  • Training the Neural Network
  • Data Pre-Processing to Use Pre-Trained Word Vectors
  • Lookup Table to Map Unique Identifiers
  • Sentences Using Word Identifiers
  • Sentiment Analysis Using Pre-Trained Vectors
  • Exercise: Performing Sentiment Analysis

Tensorflow: K-means Clustering with TensorFlow

Course: 1 Hour

  • Course Overview
  • Supervised vs. Unsupervised Learning
  • Supervised Learning Characteristics
  • Unsupervised Learning Characteristics
  • Unsupervised Learning Use Cases
  • Objectives of Clustering Techniques
  • K-means Clustering
  • K-means Clustering Algorithm
  • Install TensorFlow and Work with Jupyter Notebooks
  • Generate Random Data for K-means Clustering
  • K-means Clustering Using Estimators
  • The Iris Dataset
  • Clustering the Iris Dataset
  • Exercise: Working with Unsupervised Learning
  • Exercise: Working with Clustering

Tensorflow: Building Autoencoders in TensorFlow

Course: 47 Minutes

  • Course Overview
  • Efficient Representation of Data Using Encodings
  • Autoencoders
  • Principal Component Analysis
  • Performing Principal Component Analysis on Datasets
  • Principal Component Analysis with scikit-learn
  • Autoencoders for Principal Component Analysis
  • The Fashion MNIST Dataset
  • Autoencoders for Dimensionality Reduction
  • Exercise: Working with Autoencoders

Tensorflow: Word Embeddings & Recurrent Neural Networks

Course: 44 Minutes

  • Course Overview
  • One-Hot Encoding of Words
  • Frequency-Based Encoding
  • Prediction-Based Encoding
  • Word2vec and GloVe Embeddings
  • Recurrent Neurons
  • Unrolling a Recurrent Memory Cell
  • Training a Recurrent Neural Network
  • Long Memory Cells3
  • Exercise: Working with Word Encoding
  • Exercise: Working with Recurrent Neural Networks

TensorFlow: Convolutional Neural Networks for Image Classification

Course: 1 Hour, 23 Minutes

  • Course Overview
  • The Visual Cortex
  • Convolution and Convolutional Layers
  • Image as an Input Matrix
  • Convolution Kernel and Convolutional Layer
  • Edge Detection Using Convolution
  • Pooling and Pooling Layers
  • Zero-Padding and Stride Size
  • Convolutional Neural Network Architecture
  • Overfitting and the Bias-Variance Trade-Off
  • Preventing Overfitting
  • The CIFAR-10 Dataset
  • Training and Test Dataset for Image Classification
  • Placeholders and Variables for the CNN
  • CNN for Image Classification
  • Train and Predict Using a CNN
  • Exercise: Working with CNNs

TensorFlow: Deep Neural Networks and Image Classification

Course: 1 Hour, 18 Minutes

  • Course Overview
  • Neural Networks and Deep Learning
  • Basic Structure of a Neural Network
  • The Mathematical Function Applied By a Neuron
  • Linear Transformation and Activation Functions
  • Training a Neural Network Using Gradient Descent
  • Forward Pass and Backward Pass
  • Image Representations in Machine Learning
  • Set Up TensorFlow and Use Jupyter Notebooks
  • The MNIST Dataset
  • Training an Estimator for Image Classification
  • Predicting Image Labels
  • Drawbacks of Deep Neural Networks for Images
  • Exercise: Working with Neural Networks
  • Exercise: Working with Image Classification
Unterrichtsdauer 12 Stunde
Sprache Englisch
Online-Zugang 365 Tage
Teilnahmeurkunde Ja
Preisgekröntes Online-Training Ja

Es wurden noch keine Bewertungen für dieses Produkt abgegeben.

Bewertungen

Es wurden noch keine Bewertungen für dieses Produkt abgegeben.

Microsoft Office SCORM e-Learning

Möchten Sie Microsoft Office E-Learning SCORM in das LMS Ihrer Organisation integrieren? Nehmen Sie Kontakt mit uns auf.

Bewertung der Schüler

Springest: 8.9, Edubookers: 8.5

Qualitätsgarantie

Preisgekröntes E-Learning & zertifizierte Tutoren

Microsoft Partner

und Certiport Partner

Nicht Gut, Geld Zurück

und eine Starter-Garantie