AI Development with TensorFlow E-Learning Kurs





AI Development with TensorFlow E-Learning Kurs
KI-Entwicklung mit TensorFlow trainieren - Online-E-Learning-Kurs. Bestellen und sofort zum besten Preis starten.
Lesen Sie mehr- Marke:
- Artificial Intelligence
- Verfügbarkeit:
- Auf Lager
- Award Winning E-learning
- Tiefpreisgarantie
- Persönlicher Service durch unser Expertenteam
- Sicher online oder per Rechnung bezahlen
- Bestellung und Start innerhalb von 24 Stunden
AI Development with TensorFlow E-Learning Ausbildung
Bestellen Sie dieses großartige E-Learning-Ausbildung AI Development mit TensorFlow Online-Kurs, 1 Jahr 24/7 Zugriff auf umfangreiche interaktive Videos, Sprache, praktische Aufgaben, Fortschrittsüberwachung durch Berichte und Tests nach Testwissen direkt. Nach dem Kurs erhalten Sie eine Teilnahmebescheinigung.
Kursinhalt
TensorFlow: Introduction to Machine Learning
Course: 1 Hour, 41 Minutes
- Course Overview
- Introduction to Machine Learning Algorithms
- Understanding Machine Learning
- Understanding Deep Learning
- Supervised and Unsupervised Learning
- TensorFlow for Machine Learning
- Tensors and Operators
- Understanding How to Install TensorFlow
- Installing TensorFlow on the Local Machine
- Working with Constants
- The Computation Graph with TensorBoard
- Working with Variables and Placeholders
- Variables and Placeholders on TensorBoard
- Updating Variables in a Session
- Feed Dictionaries
- Named Scopes for Better Visualization
- Eager Execution
- Exercise: Machine Learning and TensorFlow
- Exercise: Working with Computation Graph
TensorFlow: Simple Regression and Classification Models
Course: 1 Hour, 38 Minutes
- Course Overview
- Understanding Linear Regression
- Gradient Descent and Optimizers
- Explore the Boston Housing Prices Dataset
- Creating Training and Test Datasets for Regression
- Base Model with scikit-learn
- Setting up the Linear Regression Computation Graph
- Train and Visualize the Linear Regression Model
- Visualize the Model with TensorBoard
- The High-Level Estimator API
- Linear Regression with Estimators
- Prediction Using Estimators
- Understanding Binary Classification
- The Cross Entropy Loss Function and Softmax
- Continuous and Categorical Data
- Creating Training & Test Datasets for Classification
- Binary Classification Using Estimators
- Exercise: Working with Linear Regression
- Exercise: Working with Binary Classification
TensorFlow: Deep Neural Networks and Image Classification
Course: 1 Hour, 18 Minutes
- Course Overview
- Neural Networks and Deep Learning
- Basic Structure of a Neural Network
- The Mathematical Function Applied By a Neuron
- Linear Transformation and Activation Functions
- Training a Neural Network Using Gradient Descent
- Forward Pass and Backward Pass
- Image Representations in Machine Learning
- Set Up TensorFlow and Use Jupyter Notebooks
- The MNIST Dataset
- Training an Estimator for Image Classification
- Predicting Image Labels
- Drawbacks of Deep Neural Networks for Images
- Exercise: Working with Neural Networks
- Exercise: Working with Image Classification
TensorFlow: Convolutional Neural Networks for Image Classification
Course: 1 Hour, 21 Minutes
- Course Overview
- Neural Networks and Deep Learning
- Basic Structure of a Neural Network
- The Mathematical Function Applied By a Neuron
- Linear Transformation and Activation Functions
- Training a Neural Network Using Gradient Descent
- Forward Pass and Backward Pass
- Image Representations in Machine Learning
- Set Up TensorFlow and Use Jupyter Notebooks
- The MNIST Dataset
- Training an Estimator for Image Classification
- Predicting Image Labels
- Drawbacks of Deep Neural Networks for Images
- Exercise: Working with Neural Networks
- Exercise: Working with Image Classification
- Explore how to model language and
Tensorflow: Word Embeddings & Recurrent Neural Networks
Course: 40 Minutes
- Course Overview
- One-Hot Encoding of Words
- Frequency-Based Encoding
- Prediction-Based Encoding
- Word2vec and GloVe Embeddings
- Recurrent Neurons
- Unrolling a Recurrent Memory Cell
- Training a Recurrent Neural Network
- Long Memory Cells
- Exercise: Working with Word Encoding
- Exercise: Working with Recurrent Neural Networks
Tensorflow: Sentiment Analysis with Recurrent Neural Networks
- Course: 58 Minutes
- Course Overview
- Configuring the TensorFlow Environment
- Training Data
- Data Pre-Processing
- Unique Identifiers to Represent Words
- Construct a Recurrent Neural Network
- Training the Neural Network
- Data Pre-Processing to Use Pre-Trained Word Vectors
- Lookup Table to Map Unique Identifiers
- Sentences Using Word Identifiers
- Sentiment Analysis Using Pre-Trained Vectors
- Exercise: Performing Sentiment Analysis
Tensorflow: K-means Clustering with TensorFlow
Course: 1 Hour
- Course Overview
- Supervised vs. Unsupervised Learning
- Supervised Learning Characteristics
- Unsupervised Learning Characteristics
- Unsupervised Learning Use Cases
- Objectives of Clustering Techniques
- K-means Clustering
- K-means Clustering Algorithm
- Install TensorFlow and Work with Jupyter Notebooks
- Generate Random Data for K-means Clustering
- K-means Clustering Using Estimators
- The Iris Dataset
- Clustering the Iris Dataset
- Exercise: Working with Unsupervised Learning
- Exercise: Working with Clustering
Tensorflow: Building Autoencoders in TensorFlow
Course: 47 Minutes
- Course Overview
- Efficient Representation of Data Using Encodings
- Autoencoders
- Principal Component Analysis
- Performing Principal Component Analysis on Datasets
- Principal Component Analysis with scikit-learn
- Autoencoders for Principal Component Analysis
- The Fashion MNIST Dataset
- Autoencoders for Dimensionality Reduction
- Exercise: Working with Autoencoders
Tensorflow: Word Embeddings & Recurrent Neural Networks
Course: 44 Minutes
- Course Overview
- One-Hot Encoding of Words
- Frequency-Based Encoding
- Prediction-Based Encoding
- Word2vec and GloVe Embeddings
- Recurrent Neurons
- Unrolling a Recurrent Memory Cell
- Training a Recurrent Neural Network
- Long Memory Cells3
- Exercise: Working with Word Encoding
- Exercise: Working with Recurrent Neural Networks
TensorFlow: Convolutional Neural Networks for Image Classification
Course: 1 Hour, 23 Minutes
- Course Overview
- The Visual Cortex
- Convolution and Convolutional Layers
- Image as an Input Matrix
- Convolution Kernel and Convolutional Layer
- Edge Detection Using Convolution
- Pooling and Pooling Layers
- Zero-Padding and Stride Size
- Convolutional Neural Network Architecture
- Overfitting and the Bias-Variance Trade-Off
- Preventing Overfitting
- The CIFAR-10 Dataset
- Training and Test Dataset for Image Classification
- Placeholders and Variables for the CNN
- CNN for Image Classification
- Train and Predict Using a CNN
- Exercise: Working with CNNs
TensorFlow: Deep Neural Networks and Image Classification
Course: 1 Hour, 18 Minutes
- Course Overview
- Neural Networks and Deep Learning
- Basic Structure of a Neural Network
- The Mathematical Function Applied By a Neuron
- Linear Transformation and Activation Functions
- Training a Neural Network Using Gradient Descent
- Forward Pass and Backward Pass
- Image Representations in Machine Learning
- Set Up TensorFlow and Use Jupyter Notebooks
- The MNIST Dataset
- Training an Estimator for Image Classification
- Predicting Image Labels
- Drawbacks of Deep Neural Networks for Images
- Exercise: Working with Neural Networks
- Exercise: Working with Image Classification
Unterrichtsdauer | 12 Stunde |
---|---|
Sprache | Englisch |
Online-Zugang | 365 Tage |
Teilnahmeurkunde | Ja |
Preisgekröntes Online-Training | Ja |
Es wurden noch keine Bewertungen für dieses Produkt abgegeben.
Bewertungen
Es wurden noch keine Bewertungen für dieses Produkt abgegeben.
Microsoft Office SCORM e-Learning
Möchten Sie Microsoft Office E-Learning SCORM in das LMS Ihrer Organisation integrieren? Nehmen Sie Kontakt mit uns auf.