Apache Spark Apache Spark Advanced Topics E-Learning Kurs
Apache Spark Advanced Topics E-Learning Kurs
€139,00 €159,00
Apache Spark
Angebot

Apache Spark Advanced Topics E-Learning Kurs

EUR 159,00
EUR 139,00 exkl. MwSt.
  • 2 für je €155,82 kaufen und 2% sparen
  • 3 für je €154,23 kaufen und 3% sparen
  • 5 für je €147,87 kaufen und 7% sparen
  • 10 für je €143,10 kaufen und 10% sparen
  • 25 für je €135,15 kaufen und 15% sparen
  • 50 für je €124,02 kaufen und 22% sparen
  • 100 für je €111,30 kaufen und 30% sparen
  • 200 für je €79,50 kaufen und 50% sparen

Order this unique E-Learning course Apache Spark Advanced Topics online, 1 year 24/7 access to rich interactive videos and tests.

  • E-Learning - Online-Zugang: 365 Tage
  • Englische Sprache
  • Teilnahmeurkunde
Auf Lager
Bestellung vor 16.00 Uhr und heute starten.
Menge
- +
Produktbeschreibung

Apache Spark Advanced Topics E-Learning

Order this unique E-Learning Apache Spark Advanced Topics course online, 1 year 24/7 access to rich interactive videos, voice, progress monitoring through reports tests.

Kursinhalt

Spark Core

  • start the course
  • recall what is included in the Spark Stack
  • define lazy evaluation as it relates to Spark
  • recall that RDD is an interface comprised of a set of partitions, list of dependencies, and functions to compute
  • pre-partition an RDD for performance
  • store RDDS in serialized form
  • perform numeric operations on RDDs
  • create custom accumulators
  • use broadcast functionality for optimization
  • pipe to external applications
  • adjust garbage collection settings
  • perform batch import on a Spark cluster
  • determine memory consumption
  • tune data structures to reduce memory consumption
  • use Spark's different shuffle operations to minimize memory usage of reduce tasks
  • set the levels of parallelism for each operation
  • create DataFrames
  • interoperate with RDDs
  • describe the generic load and save functions
  • read and write Parquet files
  • use JSON Dataset as a DataFrame
  • read and write data in Hive tables
  • read and write data using JDBC
  • run the Thrift JDBC/OCBC server
  • show the different ways to tune up Spark for better performance

Spark Streaming

  • start the course
  • describe what a DStream is
  • recall how TCP socket input streams are ingested
  • describe how file input streams are read
  • recall how Akka Actor input streams are received
  • describe how Kafka input streams are consumed
  • recall how Flume input streams are ingested
  • set up Kinesis input streams
  • configure Twitter input streams
  • implement custom input streams
  • describe receiver reliability
  • use the UpdateStateByKey operation
  • perform transform operations
  • perform Window operations
  • perform join operations
  • use output operations on Streams
  • use DataFrame and SQL operations on streaming data
  • use learning algorithms with MLlib
  • persist stream data in memory
  • enable and configure checkpointing
  • deploy applications
  • monitor applications
  • reduce batch processing times
  • set the right batch interval
  • tune memory usage
  • describe fault tolerance semantics
  • perform transformations on Dstreams

MLlib, GraphX, and R

  • start the course
  • describe data types
  • recall the basic statistics
  • describe linear SVMs
  • perform logistic regression
  • use naïve bayes
  • create decision trees
  • use collaborative filtering with ALS
  • perform clustering with K-means
  • perform clustering with LDA
  • perform analysis with frequent pattern mining
  • describe the property graph
  • describe the graph operators
  • perform analytics with neighborhood aggregation
  • perform messaging with Pregel API
  • build graphs
  • describe vertex and edge RDDs
  • optimize representation through partitioning
  • measure vertices with PageRank
  • install SparkR
  • run SparkR
  • use existing R packages
  • expose RDDs as distributed lists
  • convert existing RDDs into DataFrames
  • read and write parquet files
  • run SparkR on a cluster
  • use the algorithms and utilities in MLlib
Eigenschaften
Studiengebühr 5 Stunden Dauer plus Übungen (variabel)
Sprache Englisch
Online-Zugang 1 Jahr
Teilnahmebescheinigung Ja, nach 70% der erfolgreichen Einsätze
Fortschrittsüberwachung Ja
Geeignet für Handys Ja
Preisgekröntes E-Learning Ja
Was unsere Kunden sagen

Durchschnitt von 0 Bewertungen

Kein Bewertungen
Lesen oder schreiben Sie einen Kommentar
* Wir werden Ihre E-Mail-Adresse niemals an Dritte weitergeben.
Fragen?
Wir helfen Ihnen gerne weiter. Bieten Sie unseren Kundenservice an
Mein Konto
You are not logged in. Log in to make use of all the benefits. Or create an account now.
Ihr Warenkorb
Ihr Warenkorb ist leer
Menu
Suchen
Search suggestions
Keine Produkte gefunden...
Wir benutzen Cookies nur für interne Zwecke um den Webshop zu verbessern. Ist das in Ordnung? Ja Nein Für weitere Informationen beachten Sie bitte unsere Datenschutzerklärung. »